NEWTON'S LAWS STANDARDS



Standards aligned with NRC Framework 2012*, which was used to create the Next Generation Science Standards and other United States Standards.

Disciplinary Core Ideas—Physical Sciences

Core Idea PS2: Motion and Stability: Forces and Interactions

How can one explain and predict interactions between objects and within systems of objects?

Grade Band Endpoints for PS2.A (NRC Framework 2012, pgs 115-116)

By the end of grade 2. Objects pull or push each other when they collide or are connected. Pushes and pulls can have different strengths and directions. Pushing or pulling on an object can change the speed or direction of its motion and can start or stop it. An object sliding on a surface or sitting on a slope experiences a pull due to friction on the object due to the surface that opposes the object’s motion.

By the end of grade 5. Each force acts on one particular object and has both a strength and a direction. An object at rest typically has multiple forces acting on it, but they add to give zero net force on the object. Forces that do not sum to zero can cause changes in the object’s speed or direction of motion. (Boundary: Qualitative and conceptual, but not quantitative addition of forces are used at this level.) The patterns of an object’s motion in various situations can be observed and measured; when past motion exhibits a regular pattern, future motion can be predicted from it. (Boundary: Technical terms, such as magnitude, velocity, momentum, and vector quantity, are not introduced at this level, but the concept that some quantities need both size and direction to be described is developed.)

By the end of grade 8. For any pair of interacting objects, the force exerted by the first object on the second object is equal in strength to the force that the second object exerts on the first but in the opposite direction (Newton’s third law). The motion of an object is determined by the sum of the forces acting on it; if the total force on the object is not zero, its motion will change. The greater the mass of the object, the greater the force needed to achieve the same change in motion. For any given object, a larger force causes a larger change in motion. Forces on an object can also change its shape or orientation. All positions of objects and the directions of forces and motions must be described in an arbitrarily chosen reference frame and arbitrarily chosen units of size. In order to share information with other people, these choices must also be shared.

By the end of grade 12. Newton’s second law accurately predicts changes in the motion of macroscopic objects, but it requires revision for subatomic scales or for speeds close to the speed of light. (Boundary: No details of quantum physics or relativity are included at this grade level.)

Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. In any system, total momentum is always conserved. If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system.

Cross-Cutting Concepts

Cause and effect: Mechanism and explanation. Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain events in new contexts.

Scale, proportion, and quantity. In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system’s structure or performance.

Stability and change. For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of a system are critical elements of study.

Scientific Practices

Asking Questions and Defining Problems
“Students at any grade level should be able to ask questions of each other about the texts they read, the features of the phenomena they observe, and the conclusions they draw from their models or scientific investigations. For engineering, they should ask questions to define the problem to be solved and to elicit ideas that lead to the constraints and specifications for its solution.” (NRC Framework 2012, p. 56)

Developing and Using Models
“Modeling can begin in the earliest grades, with students’ models progressing from concrete “pictures” and/or physical scale models (e.g., a toy car) to more abstract representations of relevant relationships in later grades, such as a diagram representing forces on a particular object in a system.” (NRC Framework, 2012, p. 58)

Planning and Carrying Out Investigations
“Students should have opportunities to plan and carry out several different kinds of investigations during their K-12 years. At all levels, they should engage in investigations that range from those structured by the teacher—in order to expose an issue or question that they would be unlikely to explore on their own (e.g., measuring specific properties of materials)— to those that emerge from students’ own questions.” (NRC Framework, 2012, p. 61)

Analyzing and Interpreting Data
“Once collected, data must be presented in a form that can reveal any patterns and relationships and that allows results to be communicated to others. Because raw data as such have little meaning, a major practice of scientists is to organize and interpret data through tabulating, graphing, or statistical analysis. Such analysis can bring out the meaning of data—and their relevance—so that they may be used as evidence. Engineers, too, make decisions based on evidence that a given design will work; they rarely rely on trial and error. Engineers often analyze a design by creating a model or prototype and collecting extensive data on how it performs, including under extreme conditions. Analysis of this kind of data not only informs design decisions and enables the prediction or assessment of performance but also helps define or clarify problems, determine economic feasibility, evaluate alternatives, and investigate failures.” (NRC Framework, 2012, p. 61-62)

Using Mathematics and Computational Thinking
“Although there are differences in how mathematics and computational thinking are applied in science and in engineering, mathematics often brings these two fields together by enabling engineers to apply the mathematical form of scientific theories and by enabling scientists to use powerful information technologies designed by engineers. Both kinds of professionals can thereby accomplish investigations and analyses and build complex models, which might otherwise be out of the question.” (NRC Framework, 2012, p. 65)

Constructing Explanations and Designing Solutions
“The goal of science is the construction of theories that provide explanatory accounts of the world. A theory becomes accepted when it has multiple lines of empirical evidence and greater explanatory power of phenomena than previous theories.”(NRC Framework, 2012, p. 52) “Asking students to demonstrate their own understanding of the implications of a scientific idea by developing their own explanations of phenomena, whether based on observations they have made or models they have developed, engages them in an essential part of the process by which conceptual change can occur. In engineering, the goal is a design rather than an explanation. The process of developing a design is iterative and systematic, as is the process of developing an explanation or a theory in science. Engineers’ activities, however, have elements that are distinct from those of scientists. These elements include specifying constraints and criteria for desired qualities of the solution, developing a design plan, producing and testing models or prototypes, selecting among alternative design features to optimize the achievement of design criteria, and refining design ideas based on the performance of a prototype or simulation.”(NRC Framework, 2012, p. 68-69)

Obtaining, Evaluating, and Communicating Information
“Any education in science and engineering needs to develop students’ ability to read and produce domain-specific text. As such, every science or engineering lesson is in part a language lesson, particularly reading and producing the genres of texts that are intrinsic to science and engineering.” (NRC Framework, 2012, p. 76)

*(NRC Framework 2012) National Academies of Sciences, Engineering, and Medicine. 2012. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165